
Liferay DXP 7.4 in a cloud-native, 
headless and serverless world

George Karouzos
CEO, Technopolis S.A.



Cloud Native





Headless





"headless" (that is, configured 
without a graphics card and 

monitor)
SPARCstation (90ies)



"headless" (that is, configured 
without front-end rendering)
Contemporary use… for an App, an API or a Service





Serverless





Serverless is a deployment paradigm

❏ Deploy and get an endpoint

❏ Everything else is a black-box (servers, ingress, containers, network,...)

❏ FaaS is the common case (AWS lambda, GCP/Azure Functions,... Cloudflare 

Workers, Vercel, Fly,…)

❏ SaaS is Serverless with no deployment



And where does Liferay 
fit in?



Liferay Deployment Options





Which of them are Cloud 
Native?



ALL!
(Potentially)



#1 Self-Hosted

❏ Not necessary On-Premises

❏ Can be deployed on any IaaS Cloud

❏ Can be deployed on any K8S Cloud offering (+ On-Premise e.g. Tanzu?)

❏ But you have to manage resources, network, ingress, ci/cd, monitoring, 

upgrades of the full stack

❏ DB, Elasticsearch and Block storage can be XaaS

❏ Priced per server instance (or k8s pod) and per environment



#2 Self-Managed (LXC SM)

❏ Cloud native (K8S, docker, ci/cd, devops console)

❏ All inclusive deployment blueprint (ingress, DB, Elasticsearch and Block 

storage)

❏ But you have to manage the Liferay instance (e.g. upgrades)

❏ Priced per instance and per environment

❏ Autoscaling ready (PAYG, /hour/instance)



#3 LXC

❏ Cloud native - but you shouldn’t care…

❏ All inclusive deployment blueprint - but you shouldn’t care…

❏ You only have to manage configuration and data

❏ Upgrades by Liferay!

❏ Priced per usage (users and views)

❏ 2 Environments, PROD and UAT

❏ Autoscaling included 



But what about 
microservices?



Is Liferay a Monolith?

Yes and No…

❏ Internally is modularized using OSGi microservices
❏ But ok, this is not “pure” microservice architecture
❏ Persistent data .vs. Stateless microservices…
❏ Headless does not presuppose microservices… 
❏ CMSs are inherently monolithic (shared data)
❏ Could, at least, customizations follow microservice architecture?



Enter “Client Extensions”

❏ Introduced along with LXC

❏ The new way to extend and customize Liferay

❏ Works nicely with Headless

❏ The new “deployment” artefacts which live outside Liferay
❏ “Custom Element” - a js widget in any framework

❏ Spring-boot microservice or app

❏ Node.js microservice or app

❏ Other customizations (styling, config, assets, cron) 



Client Extensions benefits

❏ Liferay stays “clean” → effortless upgrades!

❏ Extensions still have access to Liferay (assets, session, etc)

❏ Developer’s choice of language / framework / tooling

❏ Broader pool of experienced developers

❏ Easier debugging

❏ Extensions can be scaled independently 



Headless is the new black
Everyone wants it and looks nice on it! 



Headless and Liferay

❏ It’s here since 7.1 (5 years)

❏ Evolved to support everything, not just get content

❏ Supports both REST and GraphQL

❏ Supports authentication, permissioning, RBAC

❏ Supports also low-code/no-code features (e.g. Objects, Forms)

❏ Compared to pure headless solutions, allows hybrid option



Liferay Architecture 
Guidelines



Do’s and Don'ts 

❏ Use docker and k8s even for self-hosted deployments

❏ Model your content and data within Liferay (WC, D&M, Objects, etc)

❏ Use Headless delivery either in hybrid or decoupled, choice is yours

❏ Use Client Extensions as much as possible (even if not on LXC) for customizations

❏ Use a powerful frontend framework as Custom Elements

❏ Content admin workflow is still the way to go. Deploying for content changes is 

going backwards 

❏ Open source is still relevant. Closed sourced solutions and SaaS-only solutions lock 

you in



Thank you!
and Q&A…


